HAs(mains)-2021

This question paper contains $\mathbf{1 0}$ printed pages]

ASME-21-CHEM-(II)

\square
Roll Number

CHEMISTRY (PAPER-II)

Time Allowed : 3 Hours]
[Maximum Marks : 100

QUESTION PAPER SPECIFIC INSTRUCTIONS

Please read each of the following instructions carefully before attempting questions.

1. There are EIGHT questions printed in English.
2. Candidate has to attempt FIVE questions in all.
3. Question No. $\mathbf{1}$ is compulsory. Out of the remaining SEVEN questions, FOUR are to be attempted.
4. All questions carry equal marks. The number of marks carried by a question/ part is indicated against it.
5. Write answer in legible handwriting. Each part of the question must be answered in sequence and in the same continuation.
6. Unless otherwise mentioned, symbols and notations carry their usual standard meanings.
7. Assume suitable data, if considered necessary, and indicated the same clearly.
8. Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempt partially. Any page or portion of the page left blank in answer book must be clearly struck off.
9. Re-evaluation/Re-checking of answer book of the candidate is not allowed.
ASME-21-CHEM-II $1 \quad$ P.T.O.
10. (a) An organic compound with molecular formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ shows one singlet (in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Elucidate the structure of the compound? 4
(b) Identify the products A and B in the following reaction sequence : 4

(c) Write the mechanism of the following reaction :

(d) Arrange the following alkenes towards their rate of bromination in methanol and give reason.

1

II

III

IV

VI
(e) Why the following compound will not undergo elimination reaction by either an E_{1} or E_{2} elimination?

(b) Write the major product of the following reactions with correct stereochemistry :
(i)

(c) The reaction of (2E, 4Z, 6E)-octa-2,4,6-triene proceeds under thermal condition affords cis-5,6-dimethylcyclohexa-1,3-diene. Explain formation of the product by FMO method of electrocyclic reaction.
(d) Write the major product formed in the following reactions?

3. (a) Write down the structure of the following polymers and their monomers ?
(i) PMMA
(ii) Bakelite
(iii) Buna-s
(b) Write the mechanism involved when vinyl chloride in polymerised in the presence of benzoyl peroxide ?
(c) Methoxy-polyethylene glycol show strong signal at 3.7 ppm (Integral $=$ 155 protons) originates from the CH_{2} groups, while the signal at 3.4 ppm (Integral $=3 \mathrm{H}$) originates from the methoxy end group in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. Calculate the degree of polymerisation and molecular weight of the polymer.
(d) Complete the following reaction and write the mechanism and name of the reaction :

4. (a) Complete the following reactions with correct stereochemistry of product wherever applicable :
(i)

(b) Explain an atom economy, a principle of the green chemistry.
(c) Why hydrolysis of 2-bromo-3-methylbutane yields only 2-methyl-2-butanol?
(d) Why the reaction of iodide $\left(\mathrm{I}^{-}\right)$with meso-2,3-dibromobutane gives trans2 -butene while (S, S)-2,3-dibromobutane gives cis-2-butene?
(e) Give two examples of the biodegradable polymers.
5. (a) Write the suitable mechanism for the following reaction :

(b) Arrange the following alkoxides nucleophile in decreasing order of $\mathrm{S}_{\mathrm{N}} 2$ reactivity with appropriate reason?

MeO^{-}			
(I)	(II)	(III)	(IV)

(c) An unknown organic compound with molecular formula $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}$ displays strong intensity band at $2250 \mathrm{~cm}^{-1}$ and $1720 \mathrm{~cm}^{-1}$. The compound shows only two singlets in the ratio of $3: 2$ in ${ }^{1} \mathrm{H}$ NMR spectrum. Identify the compound.
(d) Write the product and mechanism for the following reaction :

(e) Write the products A and B of the following reaction :

6. (a) Write the product(s) of the following reactions :
(i)

(b) Write the major product formed in the following reaction and also provide the absolute configuration of the product :

(c) Write the major product of the following reactions :

(d) Write the mechanism for the following reaction :

7. (a) Write the product A and B in the following reaction :

(b) ${ }^{1} \mathrm{H}$ NMR of two compounds $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}(\mathrm{A})$ and $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}(\mathrm{B})$ are given below : Compound A : ${ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 1.2(\mathrm{~s}, 6 \mathrm{H}), 2.6(\mathrm{~s}, 1 \mathrm{H})$, 3.2 (s, 1H)

Compound $\mathrm{B}:{ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}, 200 \mathrm{MHz}$) : $1.25(\mathrm{~s}, 6 \mathrm{H}), 3.3(\mathrm{~s}, 1 \mathrm{H})$, 4.8-5.1(m, 2H), 5.7-6.0 (m, 1H)

Resonance at $\delta 3.2$ and 3.3 disappears on shaking with $\mathrm{D}_{2} \mathrm{O}$. Elucidate the structure of compounds A and B and assign the peaks.
(c) Comment on aromaticity of the following compounds : 3

(i)

(ii)

(iii)
(d) A doubly charged compound shows a peak at $\mathrm{m} / \mathrm{z} 59$, what would be the molecular weight of the compound.
(e) Briefly explain Hammet equation and linear free energy relationship with suitable example.
8. (a) How will you differentiate 2-methyl-butanal and 3-methyl-butanal by mass spectrometry?

3
(b) Write the product and mechanism of the following reaction :

(c) Calculate the $\lambda_{\max }$ of the following compounds by using WoodwardFieser rule.

(i)

(ii)

Given $\lambda_{\max }:$ Cisiod $=253 \mathrm{~nm} ;$ Transoid $=214 \mathrm{~nm} ;$ Ring residue $=5 \mathrm{~nm}$; Alkyl substituent $=5 \mathrm{~nm}$; Exocyclic double bond $=5 \mathrm{~nm}$; Double bond extended conjugation $=30 \mathrm{~nm}$; and $\mathrm{OCOCH}_{3}=0 \mathrm{~nm}$.
(d) Arrange the following compounds in increasing order of $\mathrm{C}=\mathrm{C}$ stretching frequencies $\left(\mathrm{cm}^{-1}\right)$ in IR spectroscopy (Give appropriate reason): 4
\triangle
(i)

(iii)

(iv)
(e) Explain briefly Jablonski diagram.

